Полиморфизм генов и метаболический синдром

Ключевые гены, имеющие отношение к развитию клинических проявлений СПКЯ представлены двумя основными группами.
В первую группу включены гены, контролирующие метаболические процессы обмена глюкозы и, соответственно, состояния гиперинсулинемии и инсулинорезистентности.
Во вторую группу включены гены, отвечающие за синтез стероидных гормонов и индивидуальную чувствительность тканей к андрогенам.
Изменения в структуре одного или нескольких из этих генов могут вызвать развитие тех или иных клинических симптомов (или симптомокомплексов), характерных для синдрома поликистозных яичников. Разнообразие клинических и биохимических проявлений СПКЯ объясняется взаимодействием между небольшим числом ключевых генов и внешними факторами.
Информация о генетической предрасположенности к СПКЯ позволяет врачу выявить причинно-следственные связи возникновения различных клинических проявлений СПКЯ и может быть полезна при выборе методов лечения.
Ген инсулина (INS)
Предпринятый в 1994 г. широкомасштабный генетический поиск областей сцепленности генов с инсулинзависимым сахарным диабетом (ИЗСД) позволил обнаружить в геноме человека 12 локусов предрасположенности к заболеванию на 9 различных хромосомах.
На 11 хромосоме в участке 11р15.5 располагается локус предрасположенности к инсулинозависимому сахарному диабету (IDDM2, insulin-dependent diabetes mellitus, locus 2). Локус предрасположенности IDDM2 расположен в гене (INS) на хромосоме 11. Область предрасположенности IDDM2 длиной 4,1 т.п.н. (тысяч пар нуклеотидов). Она состоит из тандемно повторяющихся единиц размером 14-15 п.н. с последовательностью AGAGGGGTGTGGGG . Число повторов в составе VNTR может варьировать от 26 до более чем 200. В зависимости от их числа аллели VNTR подразделяют на 3 класса.
Аллели класса I содержат от 26 до 63 повторяющихся единиц (VNTR).
Аллели класса II содержат от 64 до 140 VNTR.
Аллели класса III включают от 141 до 209 VNTR.
Носительство аллелей класса III аллелей связано с абдоминальным ожирением и предрасполагает к развитию сахарного диабета 2-го типа. При этом наблюдается повышенная секреция инсулина в связи с усиленной экспрессией гена. У женщин носительство аллелей класса III предрасполагает к развитию синдрома поликистозных яичников.
PPARy2
Ген PPAR?2 располагается на коротком плече третьей хромосомы (3p25). Рецепторы, относящиеся к группе рецепторов, активируемых пролифераторами пероксисом, являются факторами транскрипции в ядре и делятся на альфа, гамма и дельта-рецепторы. Гамма-рецепторы делятся на гамма-1, гамма-2 и гамма-3 рецепторы. Гамма-2 рецепторы являются специфическими для жировой ткани. Свое название эти рецепторы получили вследствие того, что были обнаружены в результате поиска молекул-мишеней для группы факторов, относящихся к так называемым пролифераторам пероксисом, увеличивающих содержание пероксисом в печени грызунов. После открытия значительно более широкого биологического значения этих рецепторов факторы пролиферации пероксисом стали называться лигандами PPAR. Естественными лигандами этих рецепторов являются свободные жирные кислоты и эйкозаноиды. После активации рецептор перемещается в клеточное ядро и активирует транскрипцию большого числа генов.
Активация PPARy 2 приводит к следующим изменениям:
- снижается инсулинорезистентность
- изменяется дифференцировка адипоцитов
- подавляется ангиогенез, индуцируемый VEGF
- понижается уровень лептина (что приводит к усилению аппетита)
- падают уровни некоторых цитокинов (например, интерлейкина 6)
- повышается уровень адипонектина
PPARy 2 является мишенью действия некоторых противодиабетических препаратов, в частности относящихся к группе тиазолидиндионов (розиглитазон и пиоглитазон).
Часто встречаемым вариантом аллеля является замена цитозина на гуанин в экзоне 2 (C34G), что приводит к замене пролина на аланин в кодоне 12. Полиморфизм Pro12Ala гена рецептора y2, активируемого пролифератором пероксисом peroxisome proliferator-activated receptor y 2 (PPARy 2) связан с риском ожирения, инсулинорезистентности и развития сахарного диабета 2-го типа. Ген PPARy 2 экспрессируется в жировой ткани и регулирует дифференцировку адипоцитов и генную экспрессию в адипоцитах. Кроме того, ген экспрессируется и в бета-клетках поджелудочной железы. Поэтому возможно влияние аллеля Ala12 на секрецию инсулина поджелудочной железой. Фактором риска ожирения является носительство аллеля Ala12. Частота варианта Ala12 составляет 12-15%.
Своевременное выявление носительства данного аллеля позволяет рекомендовать изменения в диете, усиление физической активности и снижение массы тела, что позволяет практически полностью снизить риск развития диабета в этой группе лиц.
CYP11A
Ген, кодирующий цитохром P450scc (side chain cleavage enzyme, фермент отщепляющий боковую цепь).
Данный фермент лимитирует скорость реакции образования стероидов в яичниках и надпочечниках. Ген CYP11A располагается на длинном плече 15-й хромосомы в участке 15q24. Было показано, что усиление активности гена CYP11A лежит в основе повышенной продукции андрогенов.
Повышенная активность гена CYP11A была отмечена при наличии определенных нуклеотидных последовательностей в промоторной области гена.
Одним из двух основных вариантов полиморфизма промоторной области гена CYP11A является наличие разного количества пентануклеотидных повторов TTTTA, начиная с позиции -528.
Основными вариантами, наблюдаемыми в популяции являются варианты 216R, 226R, 236R и 241R. Наиболее распространенным является вариант 216R (около 60%). Следующим по частоте является вариант 226R (около 30%). Оказалось, что повышенная продукция андрогенов наблюдается при наличии всех полиморфных вариантов, кроме 216R. Эта группа вариантов обозначается как 216R- и ассоциируется с повышением риска развития синдрома поликистозных яичников у женщин.
Вариант 216R является благоприятной с точки зрения репродуктивной функции формой фермента.
Исследование на полиморфизм гена CYP11A рекомендуется при наличии признаков гиперандрогении у женщин (олигоменорея, ановуляция, повышенный рост волос на теле (гирсутизм), ультразвуковые и гормональные признаки СПКЯ) и при раннем выпадении волос у мужчин.
Знание варианта полиморфизма гена CYP11A помогает выработке правильного плана ведения пациентов с признаками гиперандрогении, метаболического синдрома и облысения.
AR
Ген рецептора андрогенов (AR) располагается на длинном плече X хромосомы (Xq12-13). Это один из самых загадочных генов, участвующих в реализации действия мужских половых гормонов на уровне клетки.
В регуляторном участке рецептора (участке транскрипции и активации), который получил название домена трансактивации находится высокополиморфная зона, состоящая из разного количества повторов аминокислоты гуанина, который кодируется разным числом повторов CAG в гене рецептора (цитозин-аденин-гуанин). В исследованиях in vitro было четко показано, что чем меньшее количество повторов в этой области присутствует в гене AR, тем большую активность проявляют андрогены на уровне клетки. Эти исследования были подтверждены клиническими исследованиями мужчин. Было показано, что мужчины-носители так называемых «коротких» форм рецептора (число повторов меньше 22) подвержены повышенному риску развития аденомы и рака предстательной железы.
У женщин наблюдается гораздо более сложная картина, связанная с тем, что в каждой клетке женщины имеется не одна (как у мужчин), а 2 X-хромосомы, причем только одна X-хромосома является «рабочей», а другая инактивирована. В разных клетках даже одной ткани могут быть инактивированы разные X-хромосомы, поэтому в разных клетках яичника могут быть включены разные варианты андрогеновых рецепторов.
Исследования полиморфизма AR в клинической практике базируются на классической публикации Hickey и соавт. (2002), показавших на популяции австралийских женщин европейского происхождения на первый взгляд парадоксальную связь между гиперандрогенией, ассоциированной с синдромом поликистозных яичников, и длиной полиморфного участка в домене трансактивации. Оказалось, что классическая форма СПКЯ ассоциирована с «длинными» (больше 22 повторов) вариантами гена AR.
Другие исследования показали достаточно сложную связь между количеством повторов и различными проявлениями гиперандрогении. В частности, сообщается о повышении риска СПКЯ при нормальном уровне тестостерона у женщин при наличии коротких форм полиморфизма, а также о возможной роли коротких форм полиморфизма как дополнительного фактора инсулинорезистентности при гиперандрогенных состояниях у женщин.
В настоящее время полиморфизм гена AR должен считаться не самостоятельным, а дополнительным маркером риска гиперандрогений. Интерпретация анализа осуществляется следующим образом.
- У мужчин: наличие коротких форм полиморфизма (
- У женщин длинные формы (y 22R) являются дополнительным фактором риска классической (сопровождающейся повышенными цифрами тестостерона) формы СПКЯ.
- У женщин короткие формы (
Исследование целесообразно проводить в следующих случаях
- Дифференциальная диагностика различных форм гиперандрогенных состояний (нарушения функций гипоталамо-гипофизарной системы, адреногенитальный синдром и др.)
- Гирсутизм и другие проявления вирильного синдрома
- Хроническая ановуляция и другие нарушения менструального цикла
- Бесплодие
- Нарушения жирового обмена
- Наличие поликистозно-измененных яичников
Интерпретация результатов ПЦР-исследования
Существует два варианта представления результатов исследования:
- Наличие или отсутствии мутантного гена («+», «-»).Положительный (+) результат означает выявление генетических маркеров СПКЯ и свидетельствует о наличии генетической предрасположенности к данному виду нарушения метаболизма. Отрицательный (-) результат свидетельствует об отсутствии генетической предрасположен-ности к данному виду нарушения метаболизма.
- Результат выдается в виде кодов полиморфизмов по обоим генам (гомозигота, гетерозигота), например, результат С/С с шифром гена PPARG’ означает, что мутации нет ни в одном гене (пациент гомозиготный по данному гену). Мы выдаем результаты именно в таком виде.
Образец результата анализа:
AR | Рецептор андрогенов | Метаболизм андрогенов | (CAG)n | Exon1 | 20R/22R* |
CYP11A | цитохром P450scc | Биосинтеза стероидных гормонов | (TAAAA)n | Promotor | 4R/6R** |
INS-VNTR | инсулин | Метаболизм глюкозы | -23NphI (rs689) | VNTR class I/III | I/I *** |
PPARG’ | рецептор активатора пероксисом | Метаболический синдром | C/G | Pro12Ala | C/G **** |
Нарушения метаболизма глюкозы | Нарушения метаболизма стероидов | Наличие генетической предрасположенности | ||
---|---|---|---|---|
I | II | III | IV | |
гиперинсулинемия | инсулино-резистентность | нарушение синтеза прегненолона из холестерина | повышенная чувствительность тканей кандрогенам | |
+ | – | + | – | предрасположенность к СПКЯ |
+ | – | + | + | предрасположенность к СПКЯ и повышенной чувствительности тканей к андрогенам |
+ | + | + | – | предрасположенность к СПКЯ с состоянием инсулинорезистентности (выэаженный метаболический синдром) |
+ | + | + | + | предрасположенность к СПКЯ с развернутыми клиническими проявлениями |
+ | + | предрасположенность к метаболическому синдрому (высокая степень риска нарушений жирового обмена, артериальной гипертензии, сердечнососудистых заболеваний), которая может повлечь за собой нарушения репродуктивной функции, но не является фактором предрасположенности к СПКЯ | ||
– | + | – | предрасположенность к состоянию инсулинорезистентности как части метаболического синдрома | |
– | – | – | + | предрасположенность к повышенной чувствительности тканей к андрогенам |
+ | – | – | + | предрасположенность к состоянию инсулинорезистентности как части метаболического синдрома |
– | + | – | + | предрасположенность к состоянию инсулинорезистентности и повышенной чувствительности тканей к андрогенам |
– | – | + | – | предрасположенность к нарушению метаболизма андрогенов и связанные с этим нарушения репродуктивной функции |
– | + | + | + | предрасположенность к СПКЯ при наличии метаболических нарушений (ожирения, выявленных гиперинсулинемии натощак или постпрандиальной гипергликемии) |
+ | – | – | – | самостоятельного значения не имеет |
Как читать таблицу: «+» означает наличие мутации в гене, «-» – отсутствие мутации в гене.
Источник
Aнализы на генетические полиморфизмы при выкидышах и замерших беременностях в первом триместре
Поскольку 80%[1] потерь приходятся на первые три месяца беременности, только этих ситуаций мы коснемся в статье. Причины потери беременности после 12 недель – предмет отдельного обсуждения.
Непросто поверить, но риск спонтанного прерывания беременности на сроке 6-12 недель у здоровой женщины моложе 35 лет составляет не менее 10%[2], и повлиять на причины этих событий можно в меньшинстве случаев.
Итак, женщина понимает: ребенка не будет. Одно из первых желаний в такие моменты – узнать причину. И находятся желающие эту потребность удовлетворить: ошарашенной женщине назначают многочисленные обследования и анализы, и редко обходится без тестов на:
- «генетические причины потери беременности»
- «полиморфизмы в генах гемостаза и фолатного цикла»
- «мутации предрасположенности к невынашиванию беременности»
- «генетический риск осложнений беременности»
- …
Вариантов названий у этой услуги множество. Суть одна: по материалу матери определяют ее генотип по полиморфизмам нескольких генов.
Когда женщине назначают «генетические анализы» по поводу потери беременности — это в 99% случаев именно анализы на полиморфизмы. Поэтому (с определенным допущением) можно сказать, что анализы на полиморфизмы = генетические анализы, которые назначаются женщинам по поводу потери беременности.
Непросто в двух словах рассказать, что такое полиморфизмы. Полиморфизмы – это незначительные различия в структуре генов, определяющие разнообразие их проявлений. Каждый конкретный полиморфизм «живёт» в определенном гене, немножко изменяя свойства его продукта и, тем самым, проявление какого-то признака.
Полиморфизмы – это то, что делает нас разными. Это генетические оттенки, из-за которых один может за милую душу выпить литр молока, а другой после пары глотков будет искать туалет. Благодаря полиморфизмам у нас столько цветов глаз и волос. Из-за них у кого-то кровь сворачивается чуть быстрее среднего, а у кого-то – чуть медленнее. Удивительно, но весь этот спектр форм, цветов и особенностей задается комбинациями четырех букв-нуклеотидов, составляющих наши гены: A, G, T и C. Одну букву мы получаем от мамы, другую – от папы. Так получается наш собственный генотип: например GG, GA или TC. Результатом анализа на полиморфизмы как раз и будут пары букв.
Например, в гене фактора свертывания крови V (этот ген называется F5) буквой под номером 1691 может быть G, а может – А. Отсюда три варианта генотипов: GG, GA и AA. Вариант GG — удел большинства людей, ему не свойственны какие-то особенности. Около 2-7% людей имеют генотип GА, то есть несут полиморфизм А (так называемую Лейденскую мутацию), из-за чего склонны к повышенной свертываемости крови. Людей с генотипом АА крайне мало.
Грань между понятием «мутация» и «полиморфизм» тонка и неопределенна. Ученые-биологи любое отклонение от «эталона» могут называть мутацией, а врачи-практики обычно считают мутацией только то изменение, которое может приводить к болезни. Поэтому не смущайтесь, что полиморфизм в гене F5 называют Лейденской мутацией.
Какие полиморфизмы обычно обсуждаются в контексте потери беременности?
Назовём героев этой статьи поимённо!
Не пугайтесь того, что эти названия вам ни о чем не говорят, и пока что поверьте: они и врачу вашему в большинстве случаев ничего не скажут.
- F5: 1691 G>A (Arg506Gln)NB!
- F2: 20210 G>A NB!
- F7: 10976 G>A (Arg353Gln)
- F13: G>T (Val34Leu)
- FGB: -455 G>A
- ITGA2: 807 C>T (Phe224Phe)
- ITGB3: 1565 T>C (Leu33Pro)
- SERPINE1 (PAI-1): -675 5G>4G
- MTHFR: 677 C>T (Ala222Val)
- MTHFR: 1298 A>C (Glu429Ala)
- MTR: 2756 A>G (Asp919Gly)
- MTRR: 66 A>G (lle22Met)
NB! Обратите внимание, что эти два полиморфизма могут играть важную роль в принятии решения о назначении КОК (комбинированных оральных контрацептивов).
Почему врачи назначают анализы на эти полиморфизмы?
Когда ученые узнали о существовании полиморфизмов, они задумались: а нельзя ли использовать это знание для выделения группы людей с предрасположенностью к определенным заболеваниям, и заблаговременно их предупреждать? Известно же: предупредить легче, чем лечить!
Эти времена совпали с подъемом молекулярных технологий, позволивших выполнять тесты на полиморфизмы относительно просто и недорого. Исследователи смекнули, что работы типа «Влияние полиморфизма Х на болезнь Y» генерировать легко и делать это можно практически бесконечно. Поскольку болезней и полиморфизмов много, всегда была возможность подобрать пару «полиморфизм – болезнь», позволявшую даже из безнадежных данных вытащить мало-мальски значимую связь и опубликоваться, кокетливо умолчав об изъянах дизайна исследования. Соедините немного логики и статистики – и получите скромное, но научное достижение.
Вот как рассуждали эти исследователи: уже упоминавшаяся Лейденская мутация связана с повышенной свертываемостью крови. Известно, что формирование и функционирование плаценты сильно зависит от агрегатных свойств крови, а при невынашивании беременности в плацентах нередко находят очаги тромбоза. Логично предположить, что у носительниц Лейденской мутации эти нарушения могут встречаться чаще. Осталось провести исследование и проверить эту гипотезу. Такие исследования были проведены и некоторые показали наличие связи между наличием Лейденской мутации и повышенным риском потери беременности.
Так появилась богатая (на немалую долю отечественная) «литературная база», указывающая на связь между полиморфизмами и предрасположенностью к разным болезням.
Именно на эту «базу» опирались производители реагентов при убеждении врачей в целесообразности назначения тестов на полиморфизмы. Да-да, на определенном этапе потребность в диагностикумах для анализов на полиморфизмы стала так велика, что привлекла производителей реагентов, которые создали коммерческие наборы для выполнения этих тестов. А товар требует продвижения. Как можно расширить рынок таких наборов? Внедрить тесты на полиморфизмы в клиническую практику! И эти анализы из научных лабораторий стали «заползать» в диагностические.
Когда результаты научных исследований переносятся в клиническую практику без должной оценки последствий, страдают кошельки и нервы пациентов.
Так появились лаборатории, предлагающие тесты на полиморфизмы как медицинские диагностические услуги. Так появились врачи, наученные лабораториями и производителями реагентов, что эти тесты нужно назначать в различных случаях, в том числе при невынашивании беременности. Так сформировалась целая мифология про то, какие полиморфизмы надо выявлять и как их «лечить».
Но достаточно мифов. Дальше — только факты:
1. Полиморфизмы не являются значимой причиной ранней потери беременности
Около 70% беременностей, прервавшихся в первом триместре, не могли развиваться из-за генетических аномалий ЭМБРИОНА (не матери!!!)[3]. Не путайте с генетическими полиморфизмами!
Полиморфизмы – это генетические особенности мамы, а приводящие к выкидышу нарушения структуры и количества хромосом – это грубые аномалии эмбриона. Возникновение таких эмбрионов – часть жизни, так же, как и их ранняя отбраковка.
Оставшиеся 30% ранних потерь беременности тоже не имеют отношения к полиморфизмам, а обусловлены антифосфолипидным синдромом, неправильным функционированием шейки матки, инфекциями и другими причинами, к которым генетические полиморфизмы матери не относятся.
2. Какие-то полиморфизмы есть у всех людей
В отличие от мутаций, вызывающих редкие генетические болезни, которые встречаются у одного из десятков тысяч людей, какие-то полиморфизмы есть у всех. Каждый день мимо вас проходят люди с такими же GG, GA и TC, как у вас. Возможно, у них есть дети, но может быть и нет. Есть вероятность, что они сталкивались с потерей беременности, а может быть их это несчастье обошло стороной. В любом случае: от вас они отличаются тем, что не тратили деньги на анализ полиморфизмов.
3. Полиморфизмы не определяют признак полностью (или на большую часть)
Вернемся к несчастным больным генетическими заболеваниями: их редкий генетический дефект практически на 100% определяет их беду. То, что генетики называют «факторами среды» (поведение, питание, физическая активность) вносит очень маленький вклад в их несчастье. С полиморфизмами наоборот: их вклад очень мал.
Например, вероятность развития венозного тромбоза хоть в некоторой степени и зависит от наличия, например, уже знакомой нам Лейденской мутации, но на львиную долю определяется весом, статусом курения, возрастом, наличием беременности, принимаемыми препаратами и другими факторами.
4. Полиморфизм – не болезнь
Какими бы жуткими словами не сопровождались комбинации из букв A, G, T и C в заключении генетического анализа, они НЕ говорят о том, что у женщины будет, например, «невынашивание беременности».
Пример из жизни:
Когда на бланке результата «Нарушение развития плода – незаращение нервной трубки» написано рядом с «MTRR c.66A>G G/G» любой человек поймёт такую запись как причинно-следственную связь. А это не так. Наличие полиморфизмов говорит лишь о том, что вы принадлежите к людям, у которых по данным некоторых(!) научных(!!!) исследований эти патологии возникают чаще, чем у людей без ваших полиморфизмов. И тут мы переходим к следующему факту…
5. Влияние полиморфизмов «видно» только на больших группах людей
Даже будучи специалистом, я не пойму ваш генотип по генам свертывания крови, увидев вашу коагулограмму (анализ на свертываемость крови). А всё потому, что эти различия не «видны» на индивидуальном уровне. У человека с «плохими» полиморфизмами свертывание может быть «лучше», чем у «генетически идеального». Лишь среднее значение этого показателя, измеренное в большой группе людей с «плохим» генотипом, будет отличаться от такового у группы с «хорошим».
Немного математики: Иногда в заключении анализа рядом с жуткими «диагнозами» можно увидеть цифры. Например, «Выявленный полиморфизм в 3,5…5,5 раз увеличивает риск венозной тромбоэмболии». Эти цифры – совершенно честные[4] для Лейденской мутации. Этот полиморфизм – один из двух достойных хоть какого-то внимания полиморфизмов системы свертывания крови. Второй – так называемый «полиморфизм протромбина», c.20210G>A в гене фактора свертывания крови II (F2).
Но вернемся к цифрам. Увеличение в 3,5…5,5 раз – это существенно? Конечно существенно! Если мне завтра в три с половиной раза увеличат зарплату, это будет ой как существенно…
А если посмотреть не относительный, а абсолютный риск? Когда у вас есть Лейденская мутация, ваш ежегодный риск получить венозную тромбоэмболию равен 0,05…0,2%. Иными словами:
Наличие Лейденской мутации означает,
что с вероятностью 99,95…99,80% у вас
НЕ будет венозной тромбоэмболии (ВТЭ) в течение следующего года
Абсолютный риск ВТЭ настолько мал, что даже увеличение в разы не делает его существенным для жизни отдельного конкретного человека. Беременность в совокупности с Лейденской мутацией повышает риск ВТЭ, но шанс на то, что тромбоза НЕ будет, всё равно не опускается ниже 95%.
И теперь пара слов о лечении:
1. «Вылечить» полиморфизмы нельзя.
Это часть генотипа, и он останется неизменным до конца жизни. Поэтому тактика «сдать на полиморфизмы – полечить – сдать контрольный анализ» абсурдна по своей сути.
2. Ни один из полиморфизмов не является прямым поводом для назначения лечения.
Справедливости ради, стоит отметить, что при невынашивании беременности антикоагулянтная терапия может потребоваться, и она дает неплохие результаты. Но для назначения антикоагулянтов должен быть установлен диагноз «антифосфолипидный синдром» (который может сочетаться или не сочетаться с полиморфизмами в генах системы свертывания).
3. Курантил, актовегин, тромбоасс, пиявки не нужны.
Они не имеют доказанной эффективности в улучшении исходов беременности у женщин с полиморфизмами в системе свертывания.
Тестирование женщин даже с неоднократной потерей беременности на наследственные тромбофилии[5] и полиморфизмы фолатного цикла[6] не входит в рекомендации ведущих медицинских организаций, занимающихся этой проблемой. Но в большинстве отечественных «методичек» и рекомендаций по невынашиванию беременности эти исследования входят.
И чтобы не оставлять неопределенности:
Анализы на генетические полиморфизмы женщинам, столкнувшимся с потерей беременности один или несколько раз, делать не нужно
Источники:
[1]https://www.acog.org/Resources-And-Publications/Practice-Bulletins/Committee-on-Practice-Bulletins-Gynecology/Early-Pregnancy-Loss
[2] https://www.webmd.com/baby/guide/pregnancy-miscarriage#1
[3] https://emedicine.medscape.com/article/260495-overview#a11
[4] Scott M. Stevens et al. Guidance for the evaluation and treatment of hereditary and acquired thrombophilia. J Thromb Thrombolysis (2016) 41:154–164
[5] Evaluation and treatment of recurrent pregnancy loss: a committee opinion
[6] Thrombophilias and recurrent pregnancy loss: a critical appraisal of the literature
Автор: Карпачева Клавдия, молекулярный генетик
Комментарии в Facebook
Источник