Синдромы нарушения лейкопоэза и эритропоэза

© Автор: Солдатенков Илья Витальевич, врач терапевтического отделения, специально для СосудИнфо.ру (об авторах)
Эритропоэз — физиологический процесс образования и дифференцировки красных кровяных клеток – эритроцитов. Данный термин в переводе с древнегреческого языка дословно означает «красный, делать». Эритроциты берут начало от гемопоэтической стволовой клетки — основной единицы кроветворения. Процесс их деления и созревания длится в среднем 3—7 дней. Клетки-предшественники чувствительны к гликопротеину, эритропоэтину и прочим стимулирующим факторам.
Красные кровяные тельца были описаны в 1913 году ученым из Англии Артуром Бойкоттом. Жизненный цикл эритроцитов составляет в среднем сто дней. Для поддержания их стабильного уровня в крови постоянно формируются новые эритроидные клетки. Погибающие клетки захватываются и перевариваются макрофагами. Из кроветворной ткани в кровоток каждую минуту выходит 1,8×109 ретикулоцитов. Кровопотеря, гемолиз и прочие факторы максимально стимулируют гемопоэз, который увеличивается в 10-12 раз.
Видео: основное об эритропоэезе и гемопоэзе
Эритроциты
Развитие эритроцитов и создание уникальной структурно-функциональной модели происходит путем дифференцировки. Красные клетки крови созревают у детей первых пяти лет жизни в костном мозге всех костей скелета. Бедренная и берцовые кости перестают участвовать в кроветворении к 24 годам. В позвонках, грудине, ребрах, черепе и прочих плоских костях клетки крови образуются всю жизнь.
Эритроциты выполняют жизненно важные функции:
- дыхательная — транспорт кислорода к тканям и выведение углекислоты из организма;
- трофическая — доставка аминокислот и прочих питательных веществ к внутренним органам, обеспечение регенерации и репарации;
- детоксикационная — адсорбция токсинов и их инактивация;
- метаболическая — содержание большого числа энзимов;
- коагуляционная — наличие на поверхности клеток плазменных факторов свертывания крови;
- буферная — регулирование КОС и водно-минерального обмена;
- депонирующая — хранение воды и микроэлементов;
- иммуномодулирующая – участие в формировании иммунитета.
Особенности физиологии красных телец:
- Эритроциты способны выпадать в осадок. Это свойство напрямую зависит от белкового состава крови – чем больше в плазме содержится грубодисперсных глобулинов, тем выше СОЭ.
- При замедлении системного кровотока и сгущении крови эритроциты начинают объединяться в крупные агрегаты. Они называются ложными, поскольку распадаются на функционально активные клетки, сохраняющие свою структуру.
- Пластичность – обратимая деформация клеток, проходящих через капилляры, артериолы и венулы. Это свойство обусловлено наличием в мембране спектрина – особого белкового соединения.
- К физиологическим свойствам красных кровяных телец также относится осмотическая устойчивость и деструкция после длительной циркуляции в кровотоке.
Структура красных кровяных телец максимально адаптирована для реализации жизненно важных функций. Эти узкоспециализированные клетки мобильны. Они обеспечивают диффузию газов, взаимодействуют с гемоглобином, быстро делятся и проникают в системный кровоток. Эритроциты на 50% состоят из протеинов, на 40% из липидов и на 10% из углеводов. Клетки способны деформироваться и циркулировать по сосудам малого калибра. Такая способность обусловлена их гибкостью и пластичность. Эритроциты имеют дисковидную форму с углубленным центром. Эти безъядерные элементы не содержат органелл – их цитоплазма наполнена гемоглобином.
Для изучения формы, структуры и размера эритроцитов проводят микроскопическое исследование мазка крови. Морфологические и тинкториальные свойства клеток помогают поставить диагноз разных видов анемии.
Физиология
Эритропоэз начинается под воздействием стимулирующих факторов. Основным из них является гипоксия тканей — нехватка кислорода и ишемия органа. В ответ на происходящие изменения в организме почки синтезируют гормон эритропоэтин. Именно он запускает процесс образования эритроцитов. Влиянием этого биологически активного вещества обусловлена пролиферация и дифференциация клеток-предшественников. Процесс кроветворения ускоряется, эритроциты массово выходят в системный кровоток. Гормоны оказывают непосредственное воздействием на процесс образования железосодержащего белка — гемоглобина. Они стимулируют синтез рибонуклеиновой кислоты, обеспечивающей секрецию необходимых энзимов. Эритропоэтины улучшают кровоснабжение кроветворной ткани и ускоряют, таким образом, гемопоэз, протекающий в эритробластических островках костного мозга.
- На начальных стадиях развития плода эритропоэз осуществляется в зародышевом органе – желточном мешке.
- С 5 недели эмбрионального развития – в печени.
- С 16 недели беременности эритроциты продуцируются в фетальной селезенке.
- С 20 недели гестации этот процесс осуществляется в костном мозге.
Процесс образования форменных элементов происходит вне синусов костного мозга и называется эктраваскуляторным. Когда ребенок появляется на свет, его кроветворная ткань уже полностью сформирована. Постнатальный гемопоэз обеспечивает физиологическую регенерацию крови – ее обновление.
Факторы, стимулирующие эритропоэз:
- физическое перенапряжение,
- кровопотеря,
- курение,
- подъем в горы,
- кардиоваскулярные патологии,
- хронические бронхолегочные заболевания,
- химиотерапия,
- длительная и интенсивная витаминотерапия.
Результатом повышенной продукции эритроцитов является эритроцитоз. Он бывает физиологическим и патологическим.
Факторы, угнетающие эритропоэз:
- стойкая дисфункция почек,
- гипопротеинемия,
- авитаминозы,
- нехватка железа в организме и прочих микроэлементов,
- хронические патологии в стадии декомпенсации,
- острые инфекции,
- неоплазии недоброкачественного течения,
- тяжелые интоксикации,
- поражение костномозговых структур,
- онкогематологические расстройства — лейкоз.
Нарушение кроветворения приводит к развитию серьезного заболевания крови – анемии.
В крайне редких случаях эритропоэз осуществляется не в костном мозге, а в печеночной ткани и селезенке. Причинами подобного отклонения являются особые состояния, патологические процессы и некоторые обстоятельства.
Схема и стадии
Эритроциты во время своего развития проходят несколько сменяющих друг друга стадий. Гемангиобласт – первичная стволовая клетка, закладывающаяся в онтогенезе. Этот предок всех эндотелиальных и кровеобразующих структур трансформируется в гемоцитобласт – плюрипотентную клетку. Из нее образуется множество различных клеточных элементов, но не целый организм. Мультипотентная стволовая клетка – общий миелоидный предшественник, способный формировать клетки тканей, из которых сам был получен, и превращаться в унипотентную клетку. Она дифференцируется в сторону эритропоэза. Именно с этого звена гемопоэза начинается эритроидная линия.
Схема процесса:
- Колониеобразующая единица эритроцитопоэза — лимфоцитоподобная клетка, не имеющая специальных морфологических характеристик, способная к самообновлению и дифференциации.
- Она непрерывно делится и дает начало базофильным клеткам — проэритробластам. Это первый визуально определяемый элемент эритроцитарного ряда, способный к образованию гемоглобина. Его круглое ядро занимает более половины клетки, окрашивается в темно-фиолетовый цвет и имеет тонкодисперсную структуру хроматина.
- В результате его деления образуются базофильные эритробласты. В отличии от своих предшественников они содержат относительно мелкие ядра, базофильную цитоплазму и много рыхлого гетерохроматина.
- Митотическое деление базофильных эритробластов заканчивается появлением полихроматофильных эритробластов, имеющих в ядре конденсированный хроматин.
- Митозы этих клеток дают начало нормобластам, которые прочным кольцом окружают ретикулярную клетку, охватывают ее своими утолщенными отростками и образуют эритробластические островки. Ортохроматические эритробласты не имеют органелл. В их цитоплазме содержится много гемоглобина, а в ядре – глыбок гетерохроматина.
- После выталкивания ядра из тела клетки образуются ретикулоциты. Они синтезируют и накапливают гемоглобин благодаря работе особого рибосомального аппарата. Ретикулоциты выходят из органа кроветворения и попадают в просвет кровеносных сосудов.
- Непосредственно в кровотоке они трансформируются в зрелые эритроцитарные клетки, не имеющие ядра, органелл и рецепторных белков на поверхности. Эритроциты доставляют кислород к органам и удаляют из низ углекислый газ. Процесс созревания длится 24 часа.
Эритроциты на каждой стадии кроветворения имеют особые морфологические, тинкториальные, микроскопические, биохимические и иммунологические свойства. Во время дифференцировки клеток уменьшается размер ядра. Оно постепенно сморщивается и полностью исчезает. Цитоплазма, наоборот, увеличивается в объеме, изменяет свой цвет, накапливает гемоглобин.
Регуляция
Существуют различные виды регуляция эритропоэза — гуморальная, нервная, с помощью ретикулярных клеток, витаминов и минералов.
Гуморальная регуляция осуществляется по принципу отрицательной обратной связи. Благодаря гормону эритропоэтину процессы образования юных эритроидных клеток и распада старых, деформированных телец четко сбалансированы и непрерывны. Уровень эритроцитов в крови сохраняется относительно стабильным и обеспечивает полноценное кровоснабжение и оксигенацию тканей. Гипоксия органов, вызванная сосудистым спазмом, малокровием или иной патологией, стимулирует секрецию эритропоэтина, который усиливает продукцию красных телец и повышает их концентрацию в крови. Когда кровоснабжение органов восстанавливается, секреция эритропоэтина понижается.
К другим гормонам, контролирующим эритропоэз, относятся: кортизол, андрогены, глюкокортикоиды, инсулин, соматотропный и тиреоидные гормоны, катехоламины, интерлейкины, плацентарный пролактин. Они увеличивают продукцию эритропоэтина или непосредственно стимулируют гемопоэз. Подавляют эритропоэз эстрогены, кейлоны, глюкагон, ацетилхолин, интерфероны, факторы некроза опухолей.
- Рост и развитие организма человека сопровождаются усилением интенсивности эритропоэза.
- При гипергликемии и гипотиреозе развивается анемия, а при тиреотоксикозе возникает эритроцитоз.
- При сильном стрессе повышается продукция эритроцитов, и улучшается кровоснабжение тканей.
- Гипофункция надпочечников сопровождается эритропенией, а гиперкортицизм — эритроцитозом.
Нервная регуляция происходит следующим образом: симпатическая система активизирует эритропоэз, а парасимпатическая – тормозит.
Ретикулярные клетки влияют на процесс кроветворения двумя способами:
- Фагоцитоз — процесс поглощения и переваривания клеточных оболочек, разрушения зрелых эритроцитов с пороками развития, прекращения метаболизма ядер эритробластов.
- Рофеоцитоз — перенос ферритина, образовавшегося после распада аномальных эритроцитов, молодым ортохроматическим эритробластам.
Макрофаги оказывают непосредственное воздействие на пролиферацию и созревание эритроидных клеток. Они поглощают ядра нормобластов, обеспечивают эритробласты железом и питательными веществами, стимулируют синтез эритропоэтина и гликозаминогликанов, которые повышают концентрацию факторов роста в островках.
Для осуществления эритропоэза критически необходимы некоторые витамины и минералы:
- кобаламин — запускает секрецию глобина,
- фолиевая кислота — принимает участие в образовании ДНК ядерных форм,
- пиридоксин – обеспечивает продукцию гема,
- рибофлавин — формирование липидной оболочки эритроцитов,
- витамин С — ускоряет усвоение железа,
- витамин РР – укрепляет строму из липидов и предотвращает гемолиз,
- медь — позволяет железу быстрее всосаться в кишечнике и включиться в структуру гема,
- никель и кобальт – образование железосодержащего белка крови,
- цинк — входит в состав жизненно необходимых энзимов,
- селен — защита клеток от свободных радикалов.
Нехватка одного из них может вызвать нарушение эритроцитопоэза, а именно дифференцировки и деления стволовых клеток.
Видео: подробные лекции о гемопоэзе
Патология
Под воздействием неблагоприятных эндогенных и экзогенных факторов эритропоэз нарушается. Основные гематологические синдромы обусловлены количественными и качественными изменениями структуры и функций эритроцитов. У больных развиваются тяжелые заболевания, в основе которых лежит эритропения или эритроцитоз.
Анемия — патологический процесс, обусловленный низким уровнем эритроцитов и гемоглобина в крови. Это самое распространенное гематологическое расстройство. Оно бывает самостоятельным — вызванным нарушением гемопоэза, а также вторичным — возникающим при заболеваниях внутренних органов.
К анемиям, обусловленным нарушением кровообразования относятся:
нормобластный и мегалобластный типы эритропоэза (при анемии)
- Мегалобластная анемия отличается пониженной концентрацией крупных эритроцитов, содержащих много гемоглобина. В происхождении патологии «виноваты» клетки-предшественники – мегалобласты. В клетках костного мозга нарушается синтез ДНК. Вместо нормальных эритроцитов образуются эритробласты. Они являются функционально неактивными – не связывают кислород и не транспортируют его к органам и тканям. Патологический процесс обусловлен дисбалансом между ядром и протоплазмой, нарушением деления клеток и развития хромосом.
- Железодефицитная анемия связана с нехваткой железа в организме и низким уровнем гемоглобина в эритроцитах. Микроэлемент поступает в ЖКТ с пищей, связывается в кишечнике с белком трансферрином, всасывается в кровь и направляется в костный мозг, где встраивается в молекулу гемоглобина. Патология проявляется трофическими расстройствами — шелушением кожи, сухостью слизистых, выпадением волос, ломкостью ногтей.
- В12 – дефицитная анемия – недостаточность витамина В12, необходимого для дифференциации красных кровяных телец. Данный элемент поступает в организм с пищей, связывается с внутренним фактором Касла и участвует в кроветворении. Он необходим для синтеза ДНК и является катализатором этой реакции. У больных с анемией возникают признаки поражения ЖКТ и нервной системы.
различные изменения в созревании эритроцитов
К более редким формам анемии, обусловленной нарушением эритропоэза, относятся: метапластическая, фолиеводефицитная, сидеробластная, апластическая. Клинически все виды анемии проявляются признаками астеновегетативного синдрома – бледностью кожи, тахикардией, головокружением, слабостью, бессилием, плохим настроением.
Эритроцитоз — патологическое состояние, при котором увеличивается количество эритроцитов и гемоглобина в крови. Сама жидкость густеет, что затрудняет ее движение по сосудам и нарушает кислородный обмен. Количество эритроцитов и гемоглобина в крови увеличивается под воздействием различных факторов — физиологических и патологических.
При обезвоживании организма, связанном с профузными поносами, рвотой, гипергидрозом, или задержке жидкости, вызванной отеком легких, шоком, кардиоваскулярной недостаточностью, увеличивается концентрация красных телец в крови. Когда количество эритроцитов становится чрезмерным, повышается вязкость крови — она сгущается. Возможна агглютинация, склеивание эритроцитов и увеличение объема циркулирующей крови. У больных поднимается кровяное давление, возникает головная боль, головокружение и багровый цианоз, нарушается зрение, увеличиваются печень и селезенка, развиваются носовые кровотечения, тромбозы, инфаркты, инсульты.
Видео: лекция об анемиях – от костного мозга до селезенки
Рекомендации читателям СосудИнфо дают профессиональные медики с высшим образованием и опытом профильной работы.
На ваш вопрос в форму ниже ответит один из ведущих авторов сайта.
В данный момент на вопросы отвечает: А. Олеся Валерьевна, к.м.н., преподаватель медицинского вуза
Поблагодарить специалиста за помощь или поддержать проект СосудИнфо можно произвольным платежом по ссылке.
Источник
Выделяют следующие нарушения лейкопоэза:
1. усиление или угнетение образования лейкоцитов в гемопоэтической ткани;
2. нарушение созревания лейкоцитов в кроветворных органах;
3. продукция патологически измененных лейкоцитов. Отдельные виды нарушений лейкопоэза часто сочетаются друг с другом.
Этиология. Нарушение лейкопоэза возникает при действии биологических (бактерии, вирусы, простейшие), физических (ионизирующая радиация, ультрафиолетовые лучи) и химических факторов. К эндогенным факторам нарушения лейкопоэза относятся генетические дефекты образования и дифференцировки лейкоцитов.
Патогенез. Усиление лейкопоэза реактивного характера может быть обусловлено повышением выработки гуморальных стимуляторов лейкопоэза (колониестимулирующий фактор1) и уменьшением продукции их ингибиторов (кейлон2, простагландины Е, лактоферрин, изоферритин). При этом отмечается пролиферация лейкопоэтинчувствительных3 клеток костного мозга с ускорением их последующей дифференцировки в зрелые лейкоциты. Увеличенное поступление лейкоцитов в кровь приводит к развитию лейкоцитоза (см. с. 378).
От этиологического фактора зависит, какие клетки лейкоцитарного ряда подвергаются гиперплазии. Так, бактериальные эндотоксины стрепто- и стафилококков, некоторые продукты тканевого распада (например, при гемолизе эритроцитов, ишемии) вызывают преимущественное увеличение выработки КСФ, стимулирующего пролиферацию и дифференцировку предшественников нейтрофильных гранулоцитов, что обусловливает повышение уровня нейтрофилов в крови (нейтрофильный лейкоцитоз).
Усиление эозинофилопоэза и ускорение выхода эозинофильных гранулоцитов из костного мозга в кровь, наблюдаемое при аллергических заболеваниях, связано с увеличением синтеза КСФ в лимфоцитах после антигенной стимуляции, а кроме того, с повышением проницаемости костномозгового барьера под влиянием гистамина и других биологически активных веществ, освобождающихся при реакции антиген — антитело.
Усиление лейкопоэза опухолевой природы происходит при действии канцерогенных факторов, вызвавших мутацию генов, ответственных за размножение и дифференцировку кроветворных клеток II — IV классов, что характерно для лейкоза.
Угнетение лейкопоэза может быть обусловлено нарушением регуляции образования лейкоцитов (при уменьшении выработки КСФ или увеличении продукции ингибиторов лейкопоэза), дефицитом пластических факторов, необходимых для лейкопоэза (при белковом голоданий, недостатке цианокобаламина и фолиевой кислоты). Лейкопоэз снижается при наследственном или приобретенном поражении клеток-предшественниц грануло- и агранулоцитов и стромальных клеток, определяющих в норме дифференцировку стволовых клеток в направлении миело- и лимфоцитопоэза или же при генерализованном поражении всей лейкопоэтической ткани. Такое уменьшение лейкопоэза наблюдается при наследственной нейтропении, действии ионизирующей радиации, при опухолевых метастазах и лейкозных инфильтратах, вытесняющих нормальных продуцентов лейкоцитов, при повышенном разрушении клеток лейкопоэтического ряда в кроветворных органах при лекарственной аллергии.
Угнетение лейкопоэза, подобно его усилению, в определенных случаях захватывает либо все ряды лейкоцитов, либо преимущественно один из них.
Нарушение созревания лейкоцитов вызывается блоком дифференцировки на том или ином уровне развития клеток. Этот процесс регулируется генетически и обеспечивается определенными метаболическими реакциями. К его изменению приводят мутация (при лейкозах, наследственных дефектах созревания лейкоцитов), действие экзогенных и эндогенных факторов (возбудители гнойных и вирусных инфекций, лекарственные аллергены, интоксикация). Очень часто нарушение созревания лейкоцитов сопутствует их увеличенной продукции при реактивной и опухолевой гиперплазии клеток гемопоэтического ряда, но может возникнуть и при угнетении лейкопоэза. Кроме того, ускоренный выход незрелых лейкоцитов из костного мозга в кровь связывают с изменением проницаемости костномозгового барьера, в регуляции которой принимают участие и гликокортикоиды.
Снижение способности лейкоцитарных клеток к созреванию в костном мозге приводит к появлению незрелых клеток в крови, что отмечается при лейкемоидных реакциях и ядерном сдвиге нейтрофильных гранулоцитов влево.
Продукция патологически измененных лейкоцитов в костном мозге может возникнуть в результате опухолевой трансформации лейкопоэтической ткани при лейкозе, генетически обусловленных нарушениях структуры (наследственная пельгеровская аномалия гранулоцитов) и обмена веществ в лейкоцитах. Например, при доминантно наследуемой пельгеровской аномалии лейкоцитов образуются нейтрофильные гранулоциты, которые и после созревания, поступив в кровь, сохраняют круглое, палочковидное или двусегментное ядро. Наследственный дефицит миелопероксидазы, глюкозо-6-фосфатдегидрогеназы приводит к снижению фагоцитарной активности лейкоцитов (о синдроме Чедиака — Хигаси см. раздел VI — “Патологическая физиология иммунной системы”). Возможен и неэффективный лейкопоэз с укорочением продолжительности жизни лейкоцитов. Патологические клоны лимфоцитов могут продуцировать аутоантитела против собственных тканей, что вызывает развитие аутоиммунных заболеваний.
Источник