Синдромы нарушения эритропоэза и лейкопоэза

Синдромы нарушения эритропоэза и лейкопоэза thumbnail

Диагностика миелодиспластических синдромов – нарушения эритропоэза

Установление диагноза миелодиспластических синдромов (МДС) основывается на выявлении диспластических изменений одного или нескольких ростков гемопоэза. Морфологические изменения клеток эритро-, гранулоцито- и мегакариоцитопоэза в костном мозге и крови очень разнообразны, соотношение нормальных и диспластических элементов у разных больных существенно варьирует. Принято считать клеточную линию измененной, если число диспластических элементов в ней составляет более 10 %.

Для подтверждения клональности процесса и прогнозирования течения заболевания диагностика миелодиспластических синдромов (МДС) должна непременно включать цитогенетическое исследование клеток костного мозга, особенно при незначительном числе гемопоэтических клеток с признаками дисплазии или отсутствии цитопении.

Нарушения эритропоэза при миелодиспластических синдромах. Анемия — наиболее частая патология кроветворения, наблюдаемая у большинства пациентов. Как показали собственные исследования (82 больных первичными миелодиспластическими синдромами (МДС)), анемия была диагностирована у 95,2 % пациентов: наиболее часто — в составе панцитопении (47,6 %), только в сочетании с лейкопенией — 15,9 % и тромбоцитопенией — 17,1 %. Изолированная анемия обнаруживалась у 14,6 % больных. По данным другого отечественного исследования (71 больной первичным МДС), одноростковая цитопения определялась у 33,9 % больных, двухростковая — у 40,8 %, панцитопения выявлялась наиболее редко — у 25 %.

Обычно анемия носит макро- или нормоцитарный характер. В редких наблюдениях описана микроцитарная анемия, выражающаяся в преобладании микроцитов в общей популяции эритроцитов. По данным нашего исследования, наиболее часто отмечалась макроцитарная анемия (53 %), несколько реже — нормоцитарная (44 %). Микроцитарная анемия была выявлена только у 4 % пациентов.

Использование автоматических анализаторов крови позволяет точно измерить средний объем клеток и охарактеризовать распределение фракций по размеру в популяции эритроцитов. Увеличение среднего объема эритроцитов (MCV) более 100 фл свидетельствует о макроцитозе, уменьшение менее 85 фл — о микроцитозе. Показатель средней концентрации гемоглобина в эритроците (МСН) выше 31 пг свидетельствует о гиперхромном характере изменений, ниже 27 пг — о гипохромном.

В большинстве случаев у больных миелодиспластическими синдромами (МДС) констатируется нормохромная анемия. Следует отметить, что анемия у больных миелодиспластическими синдромами (МДС) может иметь смешанный характер и протекать на фоне хронической железодефицитной анемии, особенно у женщин, поэтому на основании данных автоматического анализатора анемия может быть квалифицирована как нормоили микроцитарная, а также нормо- или гипохромная. Только микроскопическое исследование мазков крови в этих случаях позволяет более точно охарактеризовать свойства эритроцитов.

Диагностика миелодисплатического синдрома

Количество ретикулоцитов у больных миелодиспластическими синдромами (МДС) может колебаться достаточно широко, обычно их число нормальное или сниженное. Ретикулоцитоз может быть обусловлен появлением патологической фракции длительно живущих клеток (4 дня вместо 36 ч в норме), что позволяет обозначить этот процесс как «псевдоретикулоцитоз». В других случаях выраженность анемии при миелодиспластических синдромах (МДС) может усугубляться за счет продукции антиэритроцитарных антител и гемолиза эритроцитов, который сопровождается ретикулоцитозом. Аутоиммунный гемолиз с ретикулоцитозом определяют у 7—14 % больных, в связи с чем предложено выделять подвариант миелодиспластического синдрома с гемолитическим компонентом анемии.

Дисплазия эритроцитов выражается в изменении их формы, в частности, возникающем вследствие нарушения белков цитоскелета. В мазках крови выявляют пойкилоциты, овалоциты, эллиптоциты, стоматоциты и акантоциты. В литературе приводятся наблюдения о сфероцитозе эритроцитов, предшествовавшем развитию миелодиспластического синдрома. Для картины крови характерны также тельца Жолли, кольца Кеббота, базофильная пунктация цитоплазмы и ядросодержащие эритроциты. Подобные признаки не являются строго специфичными для миелодиспластического синдрома и могут быть обнаружены при различных других патологических состояниях.

Наличие нормоцитов в периферической крови наблюдается у 1/4— 1/3 больных миелодиспластическими синдромами (МДС). По нашим наблюдениям, нормоциты присутствуют у 26 % больных первичными миелодиспластическими синдромами (МДС), среднее количество нормоцитов составляет 1,7 ± 1,4 на 100 лейкоцитов.

Данные автоматических анализаторов и тщательное морфологическое исследование мазков являются важными условиями для правильной оценки количественных и качественных параметров красной крови.

В пунктате костного мозга определяется либо резкое уменьшение (до 5 % всех ядросодержащих клеток), либо расширение (до 90 %) красного ростка. Наиболее частым признаком дизэритропоэза является его мегалобластоидный характер, наблюдаемый почти у 90 % больных. В этих случаях определяются макронормобласты как с базофильной окраской цитоплазмы, так и с оксифильной. Встречаются многоядерные формы нормобластов и клетки с цитоплазматической перемычкой. Цитоплазма клеток окрашена неравномерно, включает тельца Жолли и имеет неправильные очертания. Ядра дольчатые, фрагментированные, клетки соединяются ядерными мостиками вследствие нарушенного митоза. Встречаются двух- и многоядерные формы. Структура хроматина — разреженная.

Читайте также:  Основные синдромы при заболеваниях крови

При цитохимическом исследовании реакции Перлса в части случаев в нормобластах определяют резкое увеличение числа (более 10) сидерофильных гранул, расположенных венчиком вокруг ядра. Они представляют собой митохондрии с избыточным накоплением железа. Такие клетки обозначаются как кольцевые сидеробласты. В отдельных работах имеются указания на то, что сидеробластоз при миелодиспластическх синдромах (МДС) может ассоциироваться с редко встречающимся микроцитарным характером анемии].

Нарушение строения органелл эритроцитов сопровождается образованием патологических форм гемоглобина. В литературных источниках указывается, что HbF обнаруживается у 87,5 % пациентов РА, причем преимущественно в эритробластах (F-бластах), но не в эритроцитах, что свидетельствует, по мнению авторов, о неспособности эритробластов к нормальной дифференцировке.

Диспластические нарушения клеток эритроидного ростка включают изменения энзимного спектра клеток. Снижается активность ферментов гликолиза, повышается содержание а-нафтилацетатэстеразы и кислой фосфатазы в нормобластах и эритроцитах. В части случаев наблюдается увеличение содержания ШИК-положительного вещества в диффузной и гранулярной форме. Однако эти цитохимические особенности не являются специфичными для миелодиспластических синдромов (МДС) и могут быть обнаружены при других гемобластозах.

Представляют интерес наблюдения миелодиспластических синдромов (МДС), при которых в клетках эритроидного ростка обнаружены ферменты, характерные только для нейтрофилов. Так, в нормобластах костного мозга цитохимическим методом обнаружена щелочная фосфатаза, а электронно-микроскопическим — пероксидаза. По нашим данным, щелочная фосфатаза в нормобластах присутствует у 69 % больных миелодиспластическими синдромами, число ферментсодержащих клеток составляет 2—63 %. Указанные цитохимические особенности эритроидных предшественников выявляются при любых вариантах заболевания и свидетельствуют о глубоких нарушениях процесса дифференцировки.

– Также рекомендуем “Диагностика миелодиспластических синдромов – нарушения грануломоноцитопоэза”

Оглавление темы “Миелодиспластические синдромы (МДС)”:

  1. Патогенез миелодиспластических синдромов (МДС) – причины апоптоза
  2. Ангиогенез при миелодиспластических синдромах – механизмы
  3. Клетки крови при миелодиспластических синдромах – нарушения функции
  4. Клиника миелодиспластических синдромов – признаки
  5. Диагностика миелодиспластических синдромов – нарушения эритропоэза
  6. Диагностика миелодиспластических синдромов – нарушения грануломоноцитопоэза
  7. Диагностика миелодиспластических синдромов – дисмегакариоцитопоэз
  8. Диагностика бластных клеток при миелодиспластических синдромах
  9. Трепанобиопсия костного мозга при миелодиспластических синдромах (МДС)
  10. Цитогенетическое исследование при миелодиспластических синдромах – диагностика аномалий хромосом

Источник

ГЕМОПОЭЗ ИЛИ КРОВЕТВОРЕНИЕ: КАК ЗАРОЖДАЕТСЯ КРОВЬ В НАШЕМ ОРГАНИЗМЕ?

Кровь – это уникальная жидкая соединительная ткань, в структуре которой выделяют жидкую среду – плазму, красные и белые форменные элементы крови. Ее движение по замкнутой системе осуществляет сердце. Но откуда появляется кровь в организме? Как происходит этот процесс?

Гемопоэз или как зарождается кровь

Кровь не может возникать ниоткуда. Это сложный процесс, который контролируется многими органами и системами и называется гемопоэзом. В ходе этого процесса происходит превращение стволовой в зрелые клетки крови. Когда рождаются эритроциты, этот процесс называется эритропоэом, лейкоциты – лейкпоэзом, тромбоциты – тромбоцитопоэзом и др.

Стволовые гемопоэтические клетки, то есть те, из которых организм может сделать кровь, сосредоточены в красном костном мозге, но их циркуляция может осуществляться в органах, не относящихся к кроветворению.

Содержание клеток в крови у относительно здорового человека стабильно, но при некоторых адаптационных процессах, например, в условиях высокогорья, кровопотери или инфекции, дифференцировка этих клеток ускоряется, что и отображается в анализе крови.

Известно, что ежедневно теряется 2-5 миллиардов клеток, но они замещаются равным количеством новых. Поэтому гемопоэз не прекращается на протяжении всей жизни. Учеными был подсчитан общий вес клеток, которые образуются за всю жизнь (примерно 70 лет): 460 кг эритроцитов, 40 кг тромбоцитов и 275 кг лимфоцитов.

Читайте также:  Сколько стоит операция на wpw синдром

Представление о гемопоэзе основано не теории А.А. Максимова о стволовых клетках. Согласно этой теории, существует одна клетка-прародитель, которая впоследствии может превратиться в любую клетку крови, будь то эритроцит, тромбоцит или лимфоцит. Существует 2 основные линии, схемы кроветворения: лимфоидная, в ходе которой образуются различные виды лимфоцитов, и миелоидная, ведущая к образованию всех остальных клеток крови.

Гемопоэтические стволовые клетки

Стволовые клетки уникальны по своей природе, они могут превращаться не только в клетки крови, но и в клетки других тканей, например, воспроизводить все ткани плода во время внутриутробного развития, уже после рождения строить ткани внутренних органов, крови и т.д.

Для всех стволовых клеток характерен ряд общих свойств:

  • их строение уникально, т.к. отсутствуют структурные компоненты. А вот строение клетки крови значительно отличаются, ее компоненты выполняют определенные функции;

  • способны делиться на десятки, сотни и тысячи клеток;

  • могут перерождаться и превращаться в зрелые клетки, а их строение соответствует ее типу;

  • способны к асимметричному делению: если в этом процессе образуется одна стволовая клетка, то вторая превращается в специализированную;

  • могут перемещаться в очаги повреждения и в буквальном смысле латать дыры, так и происходит регенерация тканей, например, кожи при ее повреждениях.

Где получается кровь?

После рождения главным органом гемопоэза является красный костный мозг, который сосредоточен в большинстве костей, например, ребрах, грудине, а также эпифизе трубчатых костей.

Регуляция процесса образования крови происходит в соответствии с потребностями организма. Чтобы запустить процесс дифференцировки стволовых клеток, нужен сигнал, который поступает от цитокинов, гормонов, которые «рассказывают» о составе крови. И именно они тормозят или ускоряют процесс кроветворения.

В этом процессе принимают участие и играют важную роль витамины, макро- и микроэлементы и, конечно, вода.

Витамин В12 и В9 (фолиевая кислота) участвуют в процессе созревания и деления клеток. Железо и медь необходимы для синтеза гемоглобина, а также для созревания эритробластов – предшественников эритроцитов.

Эритропоэз

Или формирование эритроцитов, которое происходит в костном мозге тазовых и других костей, а у малышей – в эпифизе трубчатых костей. Срок жизни эритроцитов 3-4 месяца, а их утилизация (апоптоз) происходит в печени и селезенке.

Прежде чем выходить в кровь, будущие эритроциты проходят через последовательные стадии созревания, соответствующие красному ростку кроветворения.

Стволовая клетка дает клетку-предшественник – унипотентную клетку, которая имеет рецепторы к эритропоэтину – гормону, вырабатываемому почками, он и контролирует созревание красных кровяных клеток.

Колониеобразующая единица эритроцитов дает начало эритробласту, и через несколько стадий развития они дают «потомство» по следующей схеме:

  • эритробласт;

  • пронормоцит;

  • несколько последовательных форм нооцитов;

  • ретикулоцит;

  • нооцит – зрелый эритроцит, когда он выходит в кровоток и за непродолжительное время становится полноценным эритроцитом.

Лейкопоэз

Лейкоциты могут образовываться в ходе последовательных клеточных превращений, происходящих в органах кроветворения, он начинается в красном костном мозге.

Различают 5 типов лейкоцитов: гранулоциты – это нейтрофилы, эозинофилы, базофилы, и агранулоциты, к числу которых относят моноциты и лимфоциты. Они и составляют лейкоцитарную формулу.

Из стволовой клетки I класса образуется клетка-предшественник миелопоэза или лимфопоэза. И уже эти клетки через определенное число делений и этапов дифференцировки превращаются в зрелые лейкоциты, причем у каждого вида лейкоцита количество этих стадий неодинаково.

Регуляция процесса кроветворения – сложнейшая и генетически обусловленная система. Любые нарушения в этой системе, будь то нарушения выработки гормонов или же болезни, приводят к нарушению нормального состава крови и развитию тех или иных заболеваний.

Так как циркулирует кровь по всему организму, она, можно сказать, является переносчиком информации и может многое рассказать о состоянии здоровья, главное – уметь интерпретировать полученные результаты, но об этом в других материалах.

Читайте также:  Влияние синдрома эмоционального выгорания на личность медсестры

Текст: Юлия Лапушкина

Источник

Эритроцитопоэз. Гранулоцитопоэз. Этапы эритропоэза и гранулоцитопоэза.

Эритроцитопоэз начинается со стволовой кроветворной клетки. Через стадию колониеобразующей мультипотентной клетки (КОЕТЭММ) формируются бурстобразующая (БОЭ-Э) и далее колониеобразующая единица эритроцитов (КОЕ-Э). Клетки этих колоний чувствительны к факторам регуляции пролиферации и дифференцировки. Например, эритропоэтин, вырабатываемый клетками почки, стимулирует пролиферацию и дифференцировку клеток в эритробласты.

В IV-й класс включаются базофильный, полихроматофильный и оксифильный эритробласты. Проэритроциты, потом ретикулоциты составляют V-й класс и, наконец, формируются эритроциты (VI-й класс). В эритропоэзе на стадии оксифильного эритробласта происходит выталкивание ядра. В целом цикл развития эритроцита до выхода ретикулоцита в кровь продолжается до 12 суток. Общее направление эритропоэза характеризуется следующими основными структурно-функциональными изменениями: постепенным уменьшением размеров клетки, накоплением в цитоплазме гемоглобина, редукцией органелл, снижением базофилии и повышением оксифилии цитоплазмы, уплотнением ядра с последующим его выделением из состава клетки. В эритробластических островках эритробласты поглощают путем микропиноцитоза железо, поставляемое макрофагами, для синтеза гемоглобина.

Развитие эритроцитов происходит в миелоидной ткани красного костного мозга. В периферическую кровь поступают только зрелые эритроциты и немного ретикулоцитов.

Состояние, при котором содержание гемоглобина в крови значительно снижено, называется анемией. Оно бывает связано либо с уменьшением числа эритроцитов, либо с понижением содержания гемоглобина в них, и возникает в результате ряда причин: генетических (например, серповидноклеточная анемия, связанная с нарушением синтеза гемоглобина и распадом эритроцитов), кровопотери, воздействия гемолитических ядов, вызывающих распад эритроцитов, дефицита железа или витамина B12. В норме потребность в эритроцитах обеспечивается за счет размножения клеток IV-V-ro классов. Этот процесс называется гомопластическим гемопоэзом. При резком дефиците эритроцитов, вызванном кровопотерей или другими факторами, гомопластического гемопоэза оказывается недостаточно. Эритроциты начинают развиваться путем деления клеток I-III-го классов. Такой процесс называется гетеропластическим гемопоэзом.

эритроцитопоэз

Гранулоцитопоэз.

Образование гранулоцитов происходит в миелоидной ткани красного костного мозга. Исходная стволовая клетка превращается в мультипотентную клетку — предшественник миелопоэза (КОЕ-ГЭММ) и далее под воздействием колониестимулирующих факторов дифференцируется в общую родоначальную клетку для гранулоцитов и моноцитов (КОЕ-ГМн). В дальнейшем в результате дивергенции возникают родоначальные клетки для гранулоцитов (КОЕ-Гн), которые дифференцируются в идентифицируемые миелобласты (IV-й класс клеток). В ряду дальнейшей клеточной дифференцировки (V-й класс клеток) различают стадии: промиелоцита, миелоцита, метамиелоцита. Начиная со стадии промиелоцита, клетки подразделяются на 3 разновидности: нейтрофильные, эозинофильные, базофильные. Более отчетливо это подразделение можно провести на стадии миелоцитов, когда в клетках накапливается достаточное количество специфической зернистости. До стадии миелоцитов включительно клетки гранулоцитопоэза делятся митозом. Метамиелоциты митозом уже не делятся. В этих клетках ядро приобретает вначале палочковидную, а затем сегментированную форму.

Общее направление дифференцировки клеток гранулопоэза характеризуется: постепенным уменьшением размеров клетки, снижением базофилии цитоплазмы, появлением в цитоплазме специфических гранул, уменьшением размеров ядра, появлением сегментированности ядра и его уплотнением, сдвигом ядерно-цитоплазменного отношения в сторону преобладания размеров цитоплазмы над размерами ядра.

В периферическую кровь поступают зрелые гранулоциты (VI-й класс клеток) — нейтрофилы, эозинофилы и базофилы, а также небольшое количество малодифференцированных (юных) гранулоцитов. Физиологическая регенерация обеспечивается делением преимущественно клеток V-ro класса — миелоцитов.

– Также рекомендуем “Тромбоцитопоэз. Моноцитопоэз. Лимфоцитопоэз и иммуноцитопоэз.”

Оглавление темы “Лимфоциты. Соединительные ткани.”:

1. Базофильные гранулоциты. Моноциты. Функции базофилов и моноцитов.

2. Лимфоциты. Кровяные пластинки. Лимфа.

3. Кроветворные ткани. Кроветворение в желточном мешке. Кроветворение в печени. Кроветворение в красном костном мозге и тимусе.

4. Эритроцитопоэз. Гранулоцитопоэз. Этапы эритропоэза и гранулоцитопоэза.

5. Тромбоцитопоэз. Моноцитопоэз. Лимфоцитопоэз и иммуноцитопоэз.

6. Возрастные изменения и реактивность системы крови. Рыхлая волокнистая соединительная ткань.

7. Фибробласты. Функции фибробластов. Межклеточное вещество.

8. Коллагеновые волокна. Эластические волокна. Ретикулярные, или ретикулиновые, волокна.

9. Адипоциты. Пигментоциты. Гистиоциты-макрофаги. Тканевые базофилы.

10. Плазматические клетки. Жировая ткань. Эндотелий. Эндотелиоциты.

Источник